#### Recognizing Conversational Speech: What an Incremental ASR Should Do for a Dialogue System and How to Get There

Timo Baumann, Casey Kennington, Julian Hough, David Schlangen

baumann@informatik.uni-hamburg.de

Universität Bielefeld



## Motivation

Speech recognition is becoming a commodity – so, which to choose for a conversational SDS?

- we evaluate 3 systems (Google, Sphinx, Kaldi)
- focus on conversational speech
- focus on requirements for smooth interaction
- beyond Morbini et al. (2013):
  - evaluate incrementality of the recognizers
  - more detailed look at disfluent speech

#### Content

- Desiderata for conversational dialogue systems
- Mapping to evaluation criteria
- Description of the evaluated systems
- Results and discussion

#### **Recognizing Conversational Speech**

## **Recognizing Conversational Speech**

- ASRs cater for non-conversational use-cases
  - mostly training with read speech, e.g.
     Voxforge and audio books for open source systems
  - performance on conversational speech varies
- today's dialogue systems are task-based
  - "Computer Talk" (Fischer 2006): fewer disfluencies, word choice, pronunciation
  - systems will be conversational/"interactional"/social rather than "transactional" in the future
- → we focus on incrementality and disfluencies

## ASR-Desiderata for Conversational Speech Recognition

- *correct*: low CER, low WER
- *quick*: realtime
- *incremental*: partial results as early as possible
- *reliable*: no/few spurious partial results
- *maximally informative*: n-best, confidence, word-timings, preservation of disfluent speech

## ASR-Desiderata for Conversational Speech Recognition

- correct: low CER, low WER
- *quick*: realtime
- *incremental*: partial results as early as possible *reliable*: no/few spurious partial results
- maximally informative: n-best, confidence, word-timings, preservation of disfluent speech

## ASR-Desiderata for Conversational Speech Recognition

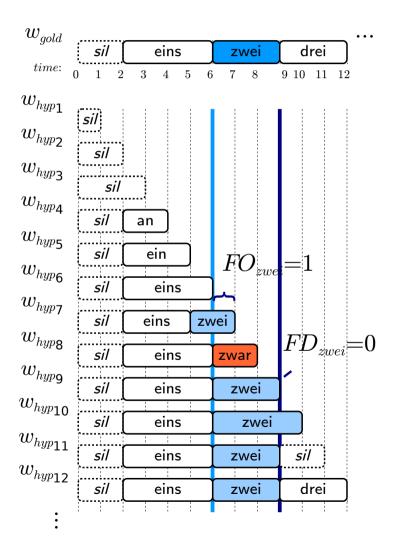
- correct: low CER, low WER
- *quick*: realtime
- *incremental*: partial results as early as possible *reliable*: no/few spurious partial results
- maximally informative: n-best, confidence, word-timings, preservation of disfluent speech

## **Evaluating Incremental ASR**

- when do words first occur in the output (FO)
  - the ASR can decide to change this (repeatedly)
- when are words first decided (FD)
  - the ASR does not change its opinion anymore

• FO tells us when (on average) the ASR *considers* a word, FD tells us when it *decides on* a word

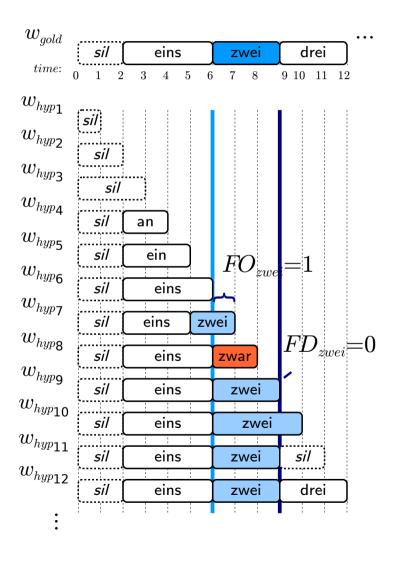
#### **Evaluating Incremental ASR**



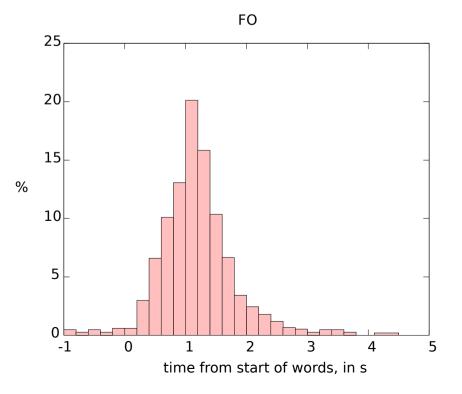
for "zwei":

first correct at t = 7first decided at t = 9 $FO_{zwei} = 1$  $FD_{zwei} = 0$ 

#### **Evaluating Incremental ASR**



compare distributions over all words to find the snappyness of the partial results



# Reliability of partial results

- quick hypotheses come at the cost of making (intermittent) mistakes
- we want hypotheses to be reliable (or even better: have an estimate of reliability)
- Word Survival Rate:
  - a word that is hypothesized and remains in the result "lives forever"
  - other words "die off" in favour of alternate wordhypotheses after a certain time
  - we plot the survival rate over time and use the age of a word as a reliability estimate
     Baumann et al., 2009 (NAACL-HLT), Selfridge et al., 2011 (SigDial)

- simple: filter out *uhs* and *uhms* 
  - John *uh* likes Mary  $\rightarrow$  John likes Mary
- better?: find and filter reparandum
  - John likes uh loves Mary  $\rightarrow$  John loves Mary
- but not good enough:
  - John likes uh he loves Mary  $\rightarrow$  He loves Mary (who?)
- filtering correctly requires more than any ASR could be capable of (understanding, context, ...)
  - do not filter but defer to a later module (potentially: mark-up possible disfluencies)

- simple: filter out *uhs* and *uhms* 
  - John *uh* likes Mary  $\rightarrow$  John likes Mary
- better?: find and filter reparandum
  - John likes uh loves Mary  $\rightarrow$  John loves Mary
- but not good enough:
  - John likes uh he loves Mary  $\rightarrow$  He loves Mary (who?)
- filtering correctly requires more than any ASR could be capable of (understanding, context, ...)
  - do not filter but defer to a later module (potentially: mark-up possible disfluencies)

- simple: filter out *uhs* and *uhms* 
  - John *uh* likes Mary  $\rightarrow$  John likes Mary
- better?: find and filter reparandum
  - John likes uh loves Mary  $\rightarrow$  John loves Mary
- but not good enough:
  - John likes uh he loves Mary  $\rightarrow$  He loves Mary (who?)
- filtering correctly requires more than any ASR could be capable of (understanding, context, ...)
  - do not filter but defer to a later module (potentially: mark-up possible disfluencies)

- simple: filter out *uhs* and *uhms* 
  - John *uh* likes Mary  $\rightarrow$  John likes Mary
- better?: find and filter reparandum
  - John likes uh loves Mary  $\rightarrow$  John loves Mary
- but not good enough:
  - John likes uh he loves Mary  $\rightarrow$  He loves Mary (who?)
- filtering correctly requires more than any ASR could be capable of (understanding, context, ...)
  - do not filter but defer to a later module (potentially: mark-up possible disfluencies)

#### **Filtering Disfluencies**

this is how I discovered, you know, this is how I discovered ----

[ the que- + the Prime Ministers', you
- --- mr smith ----

know, question ] and answer period
---- question and answer period

switchboard 4859.11; Google-ASR

## **Filtering Disfluencies**

this is how I discovered, you know, this is how I discovered ----

[ the que- + the Prime Ministers', you
- --- mr smith ---

know, question ] and answer period
---- question and answer period

• it seems like "you know" and the surroundings of the (silent) hesitation are filtered out

# **Evaluating Disfluency Filtering**

- annotate disfluencies
- correct the transcript for disfluency (i.e., remove reparanda and interregna)
   orig: John likes uh loves Mary
   filt: John loves Mary
- compare the ASR's result with the full and filtered transcripts:
  - WER increases indicate no filtering
  - WER decreases indicate proper filtering
     goog: John loves Mary
     sphx: John yikes uh loves Mary

Experiment 1: Off-the-shelf ASRs in a dialog domain

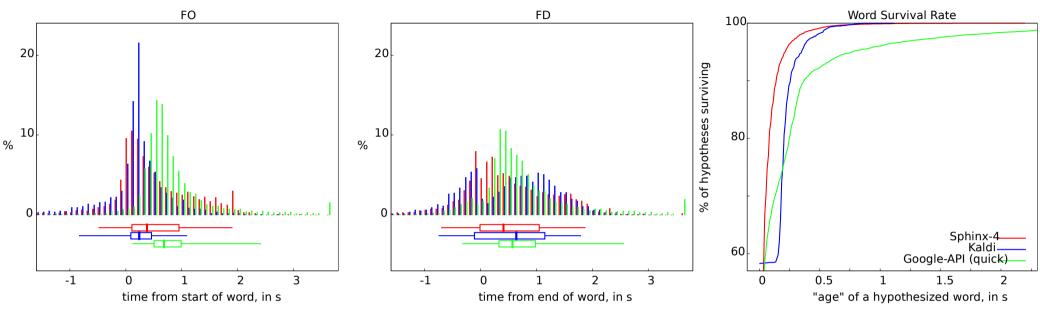
## The Setup

- Google Speech API
- Sphinx-4 with most recent off-the-shelf models (5.2PTM, generic English LM)
- Kaldi server trained with the Voxforge recipe (both acoustic and language models)

• uniformly available via InproTK

Google is limited to ~500 incremental API calls per day Baumann & Schlangen, 2012; inprotk.sf.net

#### **Incremental Metrics**



- Sphinx and Kaldi somewhat earlier than Google
- Google has many very late changes
- Sphinx results become reliable quickly
- Kaldi seems to do some internal smoothing as can be seen in the survival rate (cmp. Baumann et al., 2009)

#### word error rates

| System                  | US English speakers |                     | All English speakers |                     |
|-------------------------|---------------------|---------------------|----------------------|---------------------|
|                         | WER (all)           | disfluency filtered | WER (all)            | disfluency filtered |
| Google-API-stable/quick | 25.46               | 28.16 (+2.70)       | 40.62                | 41.60 (+0.98)       |
| Google-API-sticky       | 26.08               | 29.29 (+3.21)       | 41.23                | 42.82 (+1.59)       |
| Sphinx-4                | 57.61               | 62.31 (+4.70)       | 72.08                | 75.34 (+3.26)       |
| Kaldi                   | 71.31               | 73.38 (+2.07)       | 77.57                | 79.05 (+1.48)       |

- Google fares well at least on US English, far worse on British English (the third author was disappointed)
- Sphinx and Kaldi are too bad to be useful (we don't know why)
- all have difficulties with disfluencies

#### A close look at Google's results

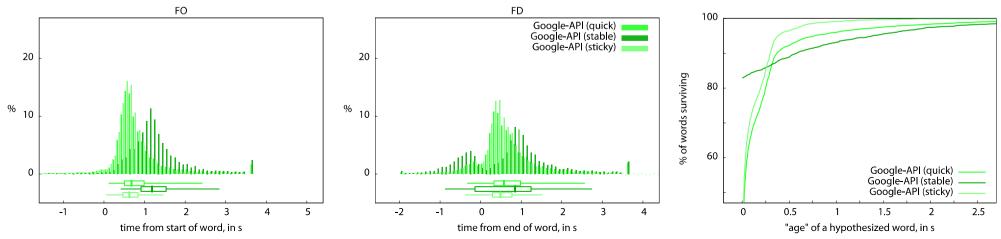
Google divides its results into a "stable" and an "unstable" part

• so far we had been looking at everything

Google apparently rescores the result post-hoc

this explains the extremely late changes

- ignoring them has little impact (2%) on WER



#### Experiment 2: In-domain training for conv. dialog

- Sphinx and Kaldi on ~11h German in-domain dialog (Pentomino puzzle domain)
  - much more competitive (30% WER)
  - Google for German is better than for English (20% WER) for our data
  - incremental aspects unchanged (advantage for Kaldi+Sphinx)

## Conclusion

- Kaldi/Sphinx are snappier than Google
  - reasonable performance on in-domain data
  - improves with more data
- Google offers superior overall performance
  - but relatively slow
  - post-hoc rescoring has no positive effects
- Disfluencies are a problem for all recognizers
  - just errors for Kaldi/Sphinx
  - filtering of disfluent speech with Google
  - we'd prefer markup over filtering

#### Thank you.

#### supported by a Daimler-and-Benz-Foundation PostDoc grant