

Recognizing Conversational Speech:
What an Incremental ASR Should Do

for a Dialogue System and
How to Get There

Timo Baumann, Casey Kennington, Julian Hough, David Schlangen

baumann@informatik.uni-hamburg.de

Motivation

Speech recognition is becoming a commodity –
so, which to choose for a conversational SDS?
● we evaluate 3 systems (Google, Sphinx, Kaldi)
● focus on conversational speech
● focus on requirements for smooth interaction
● beyond Morbini et al. (2013):

– evaluate incrementality of the recognizers

– more detailed look at disfluent speech

Content

● Desiderata for conversational dialogue systems
● Mapping to evaluation criteria
● Description of the evaluated systems
● Results and discussion

Recognizing Conversational Speech

Recognizing Conversational Speech

● ASRs cater for non-conversational use-cases
– mostly training with read speech, e.g.

Voxforge and audio books for open source systems

– performance on conversational speech varies

● today's dialogue systems are task-based
– “Computer Talk” (Fischer 2006):

fewer disfluencies, word choice, pronunciation

– systems will be conversational/“interactional”/social
rather than “transactional” in the future

➔ we focus on incrementality and disfluencies

ASR-Desiderata for
Conversational Speech Recognition
● correct: low CER, low WER
● quick: realtime
● incremental: partial results as early as possible
● reliable: no/few spurious partial results
● maximally informative: n-best, confidence,

word-timings, preservation of disfluent speech

ASR-Desiderata for
Conversational Speech Recognition
● correct: low CER, low WER
● quick: realtime
● incremental: partial results as early as possible
● reliable: no/few spurious partial results
● maximally informative: n-best, confidence,

word-timings, preservation of disfluent speech

ASR-Desiderata for
Conversational Speech Recognition
● correct: low CER, low WER
● quick: realtime
● incremental: partial results as early as possible
● reliable: no/few spurious partial results
● maximally informative: n-best, confidence,

word-timings, preservation of disfluent speech

Evaluating Incremental ASR

● when do words first occur in the output (FO)
– the ASR can decide to change this (repeatedly)

● when are words first decided (FD)
– the ASR does not change its opinion anymore

● FO tells us when (on average) the ASR considers
a word, FD tells us when it decides on a word

Baumann et al., 2009 (NAACL-HLT)

Evaluating Incremental ASR

wgold

whyp6

whyp2
whyp3
whyp4

whyp5

whyp7

whyp8

whyp1
sil

sil

sil

sil ein

sil zwei dreieins

sil an

sil eins

sil zweieins

sil zweieins

sil zwareins

sil zweieins

sil sileins zwei

sil zwei dreieins

whyp9
whyp10

whyp12

whyp11

...

...

FOzwei=1

{

FDzwei=0

2 4 6 8 10 120 3 5 7 9 111
time:

for ''zwei'':

first correct at t = 7
first decided at t = 9

FOFOzweizwei = 1
FDFDzweizwei = 0

Evaluating Incremental ASR

wgold

whyp6

whyp2
whyp3
whyp4

whyp5

whyp7

whyp8

whyp1
sil

sil

sil

sil ein

sil zwei dreieins

sil an

sil eins

sil zweieins

sil zweieins

sil zwareins

sil zweieins

sil sileins zwei

sil zwei dreieins

whyp9
whyp10

whyp12

whyp11

...

...

FOzwei=1

{

FDzwei=0

2 4 6 8 10 120 3 5 7 9 111
time:

compare distributions
over all words to find
the snappyness of the
partial results

 0

 5

 10

 15

 20

 25

-1 0 1 2 3 4 5

%

time from start of words, in s

FO

Reliability of partial results

● quick hypotheses come at the cost of making
(intermittent) mistakes

● we want hypotheses to be reliable
(or even better: have an estimate of reliability)

● Word Survival Rate:
– a word that is hypothesized and

remains in the result „lives forever“

– other words “die off” in favour of alternate word-
hypotheses after a certain time

– we plot the survival rate over time and use the age of
a word as a reliability estimate

Baumann et al., 2009 (NAACL-HLT), Selfridge et al., 2011 (SigDial)

How to deal with disfluencies

How to deal with disfluencies

● simple: filter out uhs and uhms
– John uh likes Mary → John likes Mary

● better?: find and filter reparandum
– John likes uh loves Mary → John loves Mary

● but not good enough:
– John likes uh he loves Mary → He loves Mary (who?)

● filtering correctly requires more than any ASR
could be capable of (understanding, context, ...)
– do not filter but defer to a later module

(potentially: mark-up possible disfluencies)

How to deal with disfluencies

● simple: filter out uhs and uhms
– John uh likes Mary → John likes Mary

● better?: find and filter reparandum
– John likes uh loves Mary → John loves Mary

● but not good enough:
– John likes uh he loves Mary → He loves Mary (who?)

● filtering correctly requires more than any ASR
could be capable of (understanding, context, ...)
– do not filter but defer to a later module

(potentially: mark-up possible disfluencies)

How to deal with disfluencies

● simple: filter out uhs and uhms
– John uh likes Mary → John likes Mary

● better?: find and filter reparandum
– John likes uh loves Mary → John loves Mary

● but not good enough:
– John likes uh he loves Mary → He loves Mary (who?)

● filtering correctly requires more than any ASR
could be capable of (understanding, context, ...)
– do not filter but defer to a later module

(potentially: mark-up possible disfluencies)

How to deal with disfluencies

● simple: filter out uhs and uhms
– John uh likes Mary → John likes Mary

● better?: find and filter reparandum
– John likes uh loves Mary → John loves Mary

● but not good enough:
– John likes uh he loves Mary → He loves Mary (who?)

● filtering correctly requires more than any ASR
could be capable of (understanding, context, ...)
– do not filter but defer to a later module

(potentially: mark-up possible disfluencies)

Filtering Disfluencies

this is how I discovered, you know,
this is how I discovered --- -----

[the que- + the Prime Ministers', you
- --- ---- - --- ----- mr smith ---

know, question] and answer period
----- question and answer period

switchboard 4859.11; Google-ASR

Filtering Disfluencies

this is how I discovered, you know,
this is how I discovered --- -----

[the que- + the Prime Ministers', you
- --- ---- - --- ----- mr smith ---

know, question] and answer period
----- question and answer period

● it seems like “you know” and the surroundings
of the (silent) hesitation are filtered out

switchboard 4859.11; Google-ASR

Evaluating Disfluency Filtering

● annotate disfluencies
● correct the transcript for disfluency

(i.e., remove reparanda and interregna)
orig: John likes uh loves Mary
filt: John loves Mary

● compare the ASR's result with the full and
filtered transcripts:
– WER increases indicate no filtering

– WER decreases indicate proper filtering

goog: John loves Mary
sphx: John yikes uh loves Mary

Experiment 1:
Off-the-shelf ASRs in

a dialog domain

The Setup

● Google Speech API
● Sphinx-4 with most recent off-the-shelf models

(5.2PTM, generic English LM)
● Kaldi server trained with the Voxforge recipe

(both acoustic and language models)

● uniformly available via InproTK

Google is limited to ~500 incremental API calls per day
Baumann & Schlangen, 2012; inprotk.sf.net

 0

 10

 20

-1 0 1 2 3

%

time from start of word, in s

FO

Incremental Metrics

 0

 10

 20

-1 0 1 2 3

%

time from end of word, in s

FD

 60

 80

 100

 0 0.5 1 1.5 2

%
 o

f
h

y
p

o
th

e
se

s
su

rv
iv

in
g

"age" of a hypothesized word, in s

Word Survival Rate

Sphinx-4
Kaldi

Google-API (quick)

● Sphinx and Kaldi somewhat earlier than Google
● Google has many very late changes
● Sphinx results become reliable quickly
● Kaldi seems to do some internal smoothing as can

be seen in the survival rate (cmp. Baumann et al., 2009)

word error rates

System US English speakers All English speakers
WER (all) disf uency f ltered WER (all) disf uency f ltered

GoogleAPIstable/quick 25.46 28.16 (+2.70) 40.62 41.60 (+0.98)
GoogleAPIsticky 26.08 29.29 (+3.21) 41.23 42.82 (+1.59)

Sphinx4 57.61 62.31 (+4.70) 72.08 75.34 (+3.26)
Kaldi 71.31 73.38 (+2.07) 77.57 79.05 (+1.48)

i ill

● Google fares well – at least on US English,
far worse on British English (the third author
was disappointed)

● Sphinx and Kaldi are too bad to be useful
(we don't know why)

● all have difficulties with disfluencies

A close look at Google's results

Google divides its results into a “stable” and an
“unstable” part
● so far we had been looking at everything

Google apparently rescores the result post-hoc
● this explains the extremely late changes

– ignoring them has little impact (2%) on WER

Experiment 2:
In-domain training for conv. dialog

● Sphinx and Kaldi on ~11h German in-domain
dialog (Pentomino puzzle domain)
– much more competitive (30% WER)

– Google for German is better than for English
(20% WER) for our data

– incremental aspects unchanged
(advantage for Kaldi+Sphinx)

Conclusion

● Kaldi/Sphinx are snappier than Google
– reasonable performance on in-domain data

– improves with more data

● Google offers superior overall performance
– but relatively slow

– post-hoc rescoring has no positive effects

● Disfluencies are a problem for all recognizers
– just errors for Kaldi/Sphinx

– filtering of disfluent speech with Google

– we'd prefer markup over filtering

Thank you.

supported by a Daimler-and-Benz-Foundation PostDoc grant

