

InproTK in Action: Open-Source Software for
Building German-Speaking Incremental SDSs

Timo Baumann, Okko Buß, David Schlangen

timo@ling.uni-potsdam.de
http://www.ling.uni-potsdam.de/~timo

Spoken Dialogue Systems

domain

ASR

response
generator

history

dialogue manager

NLU

TTS
visual

output

Spoken Dialogue Systems

domain

ASR

response
generator

history

dialogue manager

NLU

TTS
visual

output

Spoken Dialogue Systems

domain

ASR

response
generator

history

dialogue manager

NLU

TTS
visual

output

Spoken Dialogue Systems

domain

ASR

response
generator

history

dialogue manager

NLU

TTS
visual

output

● modules start after their predecessors have finished

IncrementalIncremental
Spoken Dialogue System

domain

ASR

response
generator

history

dialogue manager

NLU

TTS
visual

output

● partial resultspartial results are being processed immediately
● reaction is quicker, interaction more natural

Benefits of Incremental
Spoken Dialogue Systems

1.react more quickly
as modules process input during a speaker's turn:

U: Ich möchte am Samstag von Berlin
 nach Hamburg fahren.
S: Ok, um wieviel Uhr möchten Sie fahren?

U: Ich möchte am Samstag von Berlin
 nach Hamburg fahren.
S: Ok, um wieviel Uhr möchten Sie fahren?

(Crafted examples for an imaginary train timetable information system.)

Benefits of Incremental
Spoken Dialogue Systems

1.react more quickly
as modules process input during a speaker's turn:

U: Ich möchte am Samstag von Berlin
 nach Hamburg fahren.
S: Ok, um wieviel Uhr möchten Sie fahren?

U: Ich möchte am Samstag von Berlin
 nach Hamburg fahren.
S: Ok, um wieviel Uhr möchten Sie fahren?

sufficient information:
Saturday, B HH→

Benefits of Incremental
Spoken Dialogue Systems

1.react more quickly
as modules process input during a speaker's turn

2.give feedback during a speaker's turn:

● feedback might be visual in a multi-modal system

U: Ich möchte am Samstag mit dem ICE
 Nummer, äh … warten sie … 798 …
S: ja? ok.

U: Ich möchte am Samstag mit dem ICE
 Nummer, äh … warten sie … 798 …
S: ja? ok.

Benefits of Incremental
Spoken Dialogue Systems

1.react more quickly
as modules process input during a speaker's turn

2.give feedback during a speaker's turn

3.even interrupt a speaker's turn:

U: Ich möchte am Samstag mit dem ICE
 Nummer 798 nach, äh …
S: Entschuldigung, ICE 798 verkehrt nicht
 samstags, wohin möchten Sie denn fahren?

U: Ich möchte am Samstag mit dem ICE
 Nummer 798 nach, äh …
S: Entschuldigung, ICE 798 verkehrt nicht
 samstags, wohin möchten Sie denn fahren?

Benefits of Incremental
Spoken Dialogue Systems

1.react more quickly
as modules process input during a speaker's turn

2.give feedback during a speaker's turn

3.even interrupt a speaker's turn

 → → all these capabilities make the SDS
more similarmore similar to a human interlocutor

Content:

✔ Advantages of incremental SDSs
➔ Requirements for incremental SDSs
● Our model of incremental processing
● Our implementation: InproTK

 Overview of the architecture
 Predefined Modules

● Example systems

Requirements for Incremental SDSs

● System fully embraces incrementality
 it's very hard to adapt a pre-existing SDS

to turn it into an incremental system

● 100 % incremental modules
 just one non-incremental module breaks the pipeline

● Processing delays are minimized (buffering, etc.)
 across the board – all processing delays add up!
 otherwise too slow for really interesting applications

Requirements (II):
Dealing with Uncertainty

● intermediate hypotheses change with time
 we may get things wrong intermittently:

„Hamburg“ /hamb→ Urg/

● Incrementally this will look to
speech recognition as follows …

Requirements (II):
Dealing with Uncertainty

● intermediate hypotheses change with time
 we may get things wrong intermittently:

„Hamburg“ /→ hambUrg/

● ASR:

● NLU:

this sounds like
„Hamm“

they must be talking about
[city:Hamm(Westfalen)]

Requirements (II):
Dealing with Uncertainty

● intermediate hypotheses change with time
 we may get things wrong intermittently:

„Hamburg“ /→ hambUrg/

● ASR:

● NLU:

this sounds like
„Hamburg“

they must be talking about
[city:Hamburg]

Requirements (II):
Dealing with Uncertainty

● intermediate hypotheses change with time
 we may get things wrong intermittently:

„Hamburg“ /→ hambUrg/

● Couldn't the ASR just lag behind a little bit?

Requirements (II):
Dealing with Uncertainty

● Couldn't the ASR just lag behind a little bit?
● Yes, but:

 long-distance dependencies
 there will always be local ambiguities
 all delays will add up

➔ hence, previous hypotheses must be changeable

Requirements (II):
Dealing with Uncertainty

● Couldn't the ASR just lag behind a little bit?
● Yes, but:

● e. g. garden-path
sentences, …

➔ hence, previous hypotheses must be changeable

„The horse raced past the barn

Will she say „fell“ or not?
an incremental

parser:

Content:

✔ Advantages of incremental SDSs

✔ Requirements for incremental SDSs

➔Our model of incremental processing
● Our implementation: InproTK

 Overview of the architecture
 Predefined Modules

● Example systems

Our Model of Incremental Processing

● A system consists of several connected modules
● Incremental Modules are composed of

 a left buffer, a processor, and a right buffer

● a processor takes input from the left buffer and
provides output in its right buffer

(Schlangen and Skantze, 2009)

leftbufferA processorA rightbufferA

Inter-Module Communication

● A module's right buffer may be superimposed to
other modules' left buffer to share the same content

● modules communicate by probing content
and adding content in their buffers

leftbufferB processorB rightbufferB

leftbufferA processorA rightbufferA

(Schlangen and Skantze, 2009)

Incremental Units

● Content is shared in the form of Incremental Units
(IUs), which are smallest 'chunks' of information

● Links between IUs:
 grounded-in links (grin) to denote ancestry
 same-level links (sll) for information of the same type

leftbufferB processorB rightbufferB

IU4

leftbufferA processorA rightbufferA

IU1 IU2 IU3IU1 IU2 IU3

IU4

IU4grin

sll

(Schlangen and Skantze, 2009)

IU Network

● all IUs are connected through (sll and grin) links

 this network contains all the information believed
by the system at a certain point in time

 the network is highly dynamic, with changes to the
network reflecting the system's internal state over time

● Modules react to three basic changes:

 new IUs are added
 erroneously hypothesized IUs are revoked
 IUs are committed, i. e. won't be changed anymore

InproTK: Overview

● Our toolkit InproTK is an implementation
of our model of incremental processing

 modular architecture
 event-based communication between modules

● written in JAVA, integrated with Sphinx-ASR
 rich speech recognition, prosodic processing

● extensible, open-source, somewhat documented
● www.ling.uni-potsdam.de/~timo/code/inprotk/

InproTK: Available Modules

domain

ASR

response
generator

history

dialogue manager

NLU

TTS
visual

outputFloor Tracker

✔

✔

✔

✔
✔

monitoring, debugging, and analysis components

✔

InproTK: Incremental ASR

● integrates with Sphinx-4
 supports JSGF-grammars, SLMs, forced-alignment …
 input from microphone, file, RTP

● current hypothesis is updated after every frame
of audio consumed by the recognizer

 hypothesis smoothing to reduce „jitter“
at the cost of some timeliness

● (show video)

(Baumann et al., 2009)

InproTK: Floor-Tracking

● turn-taking is (almost) trivial in conventional SDS
 the user's turn is over when she stops for 500 ms

● in the incremental case, we want to be quick when
we can, but not interrupt when we shouldn't

➔ a specific component that handles this complexity
 the floor tracker emits signals like „end of turn (rising/

falling/…)“, „user is holding“, „BC opportunity“, etc.
 the dialogue manager consumes these signals

InproTK: Incremental NLU

● words are assigned attribute-value pairs (AVPs)
● complex semantics are represented as

attribute-value matrices (AVMs)
● first step: composing AVPs to

underspecified AVMs
● second step: resolving AVMs against (fully

specified) entities in the domain

InproTK: Dialogue Management

● information-state update (ISU) mechanism

● based on questions under discussion (QUD)

● IS combines semantic slots, action planning and
information grounding

● this is very much work in progress

● also, there is a simple Echo Dialogue Manager

(Buss and Schlangen, 2010)

Example Application:

● show video 1

Conclusion

● I hope to have convinced you that …
 incremental processing is vital

for more natural dialogue systems
 implementing such systems

is a worthwhile endeavour
 you should go ahead and build one yourself

… preferably using our toolkit!

Thank you!

Acknowledgements:

Okko Buß and David Schlangen, my collaborators.
DFG for funding (Emmy Noether programme)

