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● modules start after their predecessors have finished
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● partial resultspartial results are being processed immediately
● reaction is quicker, interaction more natural



  

Benefits of Incremental 
Spoken Dialogue Systems

1.react more quickly 
as modules process input during a speaker's turn:

U: Ich möchte am Samstag von Berlin 
   nach Hamburg fahren.
S: Ok, um wieviel Uhr möchten Sie fahren?

U: Ich möchte am Samstag von Berlin 
   nach Hamburg fahren.
S: Ok, um wieviel Uhr möchten Sie fahren?

(Crafted examples for an imaginary train timetable information system.)



  

Benefits of Incremental 
Spoken Dialogue Systems

1.react more quickly 
as modules process input during a speaker's turn:

U: Ich möchte am Samstag von Berlin 
   nach Hamburg fahren.
S: Ok, um wieviel Uhr möchten Sie fahren?

U: Ich möchte am Samstag von Berlin 
   nach Hamburg fahren.
S: Ok, um wieviel Uhr möchten Sie fahren?

sufficient information:
Saturday, B  HH→



  

Benefits of Incremental 
Spoken Dialogue Systems

1.react more quickly 
as modules process input during a speaker's turn

2.give feedback during a speaker's turn:

● feedback might be visual in a multi-modal system

U: Ich möchte am Samstag mit dem ICE 
   Nummer, äh … warten sie … 798 …
S:             ja?            ok.

U: Ich möchte am Samstag mit dem ICE 
   Nummer, äh … warten sie … 798 …
S:             ja?            ok.



  

Benefits of Incremental 
Spoken Dialogue Systems

1.react more quickly 
as modules process input during a speaker's turn

2.give feedback during a speaker's turn

3.even interrupt a speaker's turn:

U: Ich möchte am Samstag mit dem ICE
   Nummer 798 nach, äh …
S: Entschuldigung, ICE 798 verkehrt nicht 
   samstags, wohin möchten Sie denn fahren?

U: Ich möchte am Samstag mit dem ICE
   Nummer 798 nach, äh …
S: Entschuldigung, ICE 798 verkehrt nicht 
   samstags, wohin möchten Sie denn fahren?



  

Benefits of Incremental 
Spoken Dialogue Systems

1.react more quickly 
as modules process input during a speaker's turn

2.give feedback during a speaker's turn

3.even interrupt a speaker's turn

 → → all these capabilities make the SDS 
more similarmore similar to a human interlocutor
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✔ Advantages of incremental SDSs
➔ Requirements for incremental SDSs
● Our model of incremental processing
● Our implementation: InproTK

 Overview of the architecture
 Predefined Modules

● Example systems



  

Requirements for Incremental SDSs 

● System fully embraces incrementality
 it's very hard to adapt a pre-existing SDS 

to turn it into an incremental system

● 100 % incremental modules
 just one non-incremental module breaks the pipeline

● Processing delays are minimized (buffering, etc.)
 across the board – all processing delays add up!
 otherwise too slow for really interesting applications



  

Requirements (II): 
Dealing with Uncertainty

● intermediate hypotheses change with time
 we may get things wrong intermittently:

„Hamburg“  /hamb→ Urg/

● Incrementally this will look to 
speech recognition as follows …



  

Requirements (II): 
Dealing with Uncertainty

● intermediate hypotheses change with time
 we may get things wrong intermittently:

„Hamburg“  /→ hambUrg/

● ASR:

● NLU:

this sounds like
„Hamm“

they must be talking about 
[city:Hamm(Westfalen)]



  

Requirements (II): 
Dealing with Uncertainty

● intermediate hypotheses change with time
 we may get things wrong intermittently:

„Hamburg“  /→ hambUrg/

● ASR:

● NLU:

this sounds like
„Hamburg“

they must be talking about 
[city:Hamburg]



  

Requirements (II): 
Dealing with Uncertainty

● intermediate hypotheses change with time
 we may get things wrong intermittently:

„Hamburg“  /→ hambUrg/

● Couldn't the ASR just lag behind a little bit?



  

Requirements (II): 
Dealing with Uncertainty

● Couldn't the ASR just lag behind a little bit?
● Yes, but: 

 long-distance dependencies
 there will always be local ambiguities
 all delays will add up

➔ hence, previous hypotheses must be changeable



  

Requirements (II): 
Dealing with Uncertainty

● Couldn't the ASR just lag behind a little bit?
● Yes, but: 

● e. g. garden-path 
sentences, …

➔ hence, previous hypotheses must be changeable

„The horse raced past the barn

Will she say „fell“ or not?
an incremental

parser:



  

Content:

✔ Advantages of incremental SDSs

✔ Requirements for incremental SDSs
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● Our implementation: InproTK

 Overview of the architecture
 Predefined Modules

● Example systems



  

Our Model of Incremental Processing

● A system consists of several connected modules
● Incremental Modules are composed of 

 a left buffer, a processor, and a right buffer

● a processor takes input from the left buffer and 
provides output in its right buffer

(Schlangen and Skantze, 2009)

leftbufferA processorA rightbufferA



  

Inter-Module Communication 

● A module's right buffer may be superimposed to 
other modules' left buffer to share the same content

● modules communicate by probing content
and adding content in their buffers

leftbufferB processorB rightbufferB

leftbufferA processorA rightbufferA

(Schlangen and Skantze, 2009)



  

Incremental Units

● Content is shared in the form of Incremental Units 
(IUs), which are smallest 'chunks' of information

● Links between IUs:
 grounded-in links (grin) to denote ancestry
 same-level links (sll) for information of the same type

leftbufferB processorB rightbufferB

IU4

leftbufferA processorA rightbufferA

IU1 IU2 IU3IU1 IU2 IU3

IU4

IU4grin

sll

(Schlangen and Skantze, 2009)



  

IU Network

● all IUs are connected through (sll and grin) links

 this network contains all the information believed 
by the system at a certain point in time

 the network is highly dynamic, with changes to the 
network reflecting the system's internal state over time

● Modules react to three basic changes:

 new IUs are added
 erroneously hypothesized IUs are revoked
 IUs are committed, i. e. won't be changed anymore



  

InproTK: Overview

● Our toolkit InproTK is an implementation 
of our model of incremental processing 

 modular architecture
 event-based communication between modules

● written in JAVA, integrated with Sphinx-ASR
 rich speech recognition, prosodic processing

● extensible, open-source, somewhat documented
● www.ling.uni-potsdam.de/~timo/code/inprotk/



  

InproTK: Available Modules

domain

ASR

response 
generator

history

dialogue manager

NLU

TTS
visual

outputFloor Tracker

✔

✔

✔

✔
✔

monitoring, debugging, and analysis components

✔



  

InproTK: Incremental ASR

● integrates with Sphinx-4
 supports JSGF-grammars, SLMs, forced-alignment … 
 input from microphone, file, RTP

● current hypothesis is updated after every frame 
of audio consumed by the recognizer

 hypothesis smoothing to reduce „jitter“ 
at the cost of some timeliness

● (show video)

(Baumann et al., 2009)



  

InproTK: Floor-Tracking

● turn-taking is (almost) trivial in conventional SDS
 the user's turn is over when she stops for 500 ms

● in the incremental case, we want to be quick when 
we can, but not interrupt when we shouldn't

➔ a specific component that handles this complexity
 the floor tracker emits signals like „end of turn (rising/ 

falling/…)“, „user is holding“, „BC opportunity“, etc.
 the dialogue manager consumes these signals



  

InproTK: Incremental NLU

● words are assigned attribute-value pairs (AVPs)
● complex semantics are represented as

attribute-value matrices (AVMs)
● first step: composing AVPs to 

underspecified AVMs
● second step: resolving AVMs against (fully 

specified) entities in the domain



  

InproTK: Dialogue Management

● information-state update (ISU) mechanism

● based on questions under discussion (QUD)

● IS combines semantic slots, action planning and 
information grounding

● this is very much work in progress

● also, there is a simple Echo Dialogue Manager

(Buss and Schlangen, 2010)



  

Example Application: 

● show video 1



  

Conclusion

● I hope to have convinced you that …
 incremental processing is vital 

for more natural dialogue systems
 implementing such systems 

is a worthwhile endeavour
 you should go ahead and build one yourself

… preferably using our toolkit!



  

Thank you!
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