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ABSTRACT

In this paper, we present a study in which a robot initiates interac-
tions with people passing by in an in-the-wild scenario. The robot
adapts the loudness of its voice dynamically to the distance of the
respective person approached, thus indicating who it is talking to.
It furthermore tracks people based on information on body orienta-
tion and eye gaze and adapts the text produced based on people’s
distance autonomously. Our study shows that the adaptation of the
loudness of its voice is perceived as personalization by the partici-
pants and that the likelihood that they stop by and interact with the
robot increases when the robot incrementally adjusts its behavior.
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1 INTRODUCTION

With robots moving into public spaces, like shopping malls, airports
or museums, one task they are likely to fulfill is to address unfamiliar
people and initiate interactions, for instance, to offer a service.
Establishing an interaction with a stranger is not an easy task,
not even for people [7]. For robots, which generally have fewer
modalities to initiate interactions and to negotiate whether it is
acceptable to approach a person, such a task is even harder (e.g.
(20]).

The first problem a robot has to solve in order to address people
in public spaces is to get their attention and to indicate that it is
talking to them, rather than to anyone else or no one in particular
(e.g.[17]). Thus, the robot needs to personalize its behavior in such
a way that the person addressed recognizes that he or she is being
addressed by the robot. In the current study, we therefore explore
the effects of adjusting the robot’s speech, gaze and body orientation
to the one type of information readily available about a potential
addressee, namely his or her distance from the robot.

Humans intuitively adapt their speech behavior based on the
distance of the intended communication partner, which their com-
munication partners can exploit to identify to whom the respective
utterance is addressed (e.g. [9, 12]). That is, the further away the
intended recipient is, the louder the speech (taking context into
account; for instance, the chosen intensity level would be higher
in a noisy shopping mall than in a quiet library). Thus, the given
intensity level informs listeners about the intended addressee.

In the current study, we explore the extent to which this prop-
erty of human interaction can be employed to select addressees
in human-robot interaction and thus to initiate interactions. This
is however not completely trivial because for humans, a kind of
relaxed baseline intensity level is known, with which an increased
intensity level, for instance, to address someone who is further
away, can be compared. Concerning the synthesized speech that
robots use, such a baseline is not given; that is, an ‘extra effort’
is not audible from synthesized speech that is played back at a
higher volume, as other speech characteristics that characterize
loud human speech, such as the fundamental frequency [2], tempo,
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Figure 1: The Experimental Set-up

spectral intensity, or vowel-to-consonant ratios [25], are not easily
controllable in off-the-shelf speech synthesis systems.

In human-robot interaction, the respective addressee has to un-
derstand that changes in intensity are incrementally adjusted to his
or her distance in order to identify them as indicators of recipient
design [9]. Thus, it can be expected that intensity as such does not
function as an attention getting signal, but that the personalization
of the intensity to the addressee’s distance can be such a cue. There-
fore, speech characteristics of the utterance produced by the robot
must be adapted online as the utterance unfolds (and the proximity
of the human changes).

2 PREVIOUS WORK

Previous work concerns studies that address how robots can initiate
interactions in general, and what social cues have been found useful
in order to do so, as well as work on incremental speech adaptation.

2.1 Initiating Human-Robot Interactions

Several studies confirm that initiating interactions by robots in the
wild is a challenge; for instance, in a study in which a museum
robot tries to get visitors involved in hearing more about a partic-
ular picture, Pitsch et al. [19] report 63% successful initiations of
interactions without a personalized, contingent response by the
robot in the dialog opening, compared to 80% success if the robot
corresponds contingently.

Gehle et al. [13] and Kato et al. [17] experiment with the right
moments and the right robot behaviors to open an interaction by
learning from human operators. Similarly, Sidner et al. [27] explore
different methods for initiating interactions in an office scenario. In
general, speech is found to be more effective than just gaze or body
orientation of the robot (e.g. [18, 26]). For instance, in a study by
Fischer et al. [10], not a single participant responded to the robot’s
turn to the participant and gaze in their direction alone, and even a
beep sound was largely ignored (see also [1]).

To sum up, previous work on how to initiate human-robot in-
teractions in the wild has documented considerable challenges
in getting people to interact with a robot. As the work by Pitsch
and colleagues [19] has shown, a response that is contingent on
the respective participant’s behavior can effectively make people
stop and interact, as well as combinations of behaviors in different

modalities (e.g. [26, 27]). These findings suggest that multimodal
robot behaviors that are tailored to and contingent on the user’s
behavior should be effective.

2.2 Incremental Speech Adaptation

Incremental processing concerns the piece-meal analysis of an
interaction partner’s behavior while it is occurring; that is, the
computational system does not wait for a user action to be complete
before processing it, but starts analyzing the meaning of incomplete,
evolving actions [24].

Producing behaviors incrementally can be beneficial in HRI as
well: for instance, instead of planning and producing more elab-
orate behaviors, the robot plans for the delivery of interruptable
speech actions that can seemlessly be extended, thus foreseeing
self-interruptions [5] and incremental information delivery [6]. Fur-
thermore, adjusting what is spoken depending on the interaction
with the context has been found beneficial [3]. In human-robot
interaction, this generally leads to greater responsivity because the
robot can adapt flexibly to aspects of the user’s behavior [14].

Incremental speech production requires incremental speech syn-
thesis [4] so that speech output can be seemlessly extended (or
shortened) without audible breaks. As speech is synthesized online,
with very little latencies, incremental speech synthesis also allows
to adapt the way that speech is delivered in an online fashion. For
example, speech intensity can be adapted to account for ambient
noise, and Rottschéfer et al. [21] find that it is important to adapt
more than the pure volume to be as natural as possible.

To sum up, previous work on incrementality in HRI has docu-
mented positive effects in terms of responsivity and dialog man-
agement. Since incrementality is one method to make a robot’s
behavior contingent on a user’s behavior, one may expect that it
is also beneficial to increase people’s motivation to interact with
the robot; that is, by processing the user’s behavior continuously
and responding incrementally, the robot can seamlessly adjust its
behavior to the respective user. A particular kind of incremental
interaction lies in adapting the loudness to react to the user’s prox-
imity with low latency and thereby achieving an effect of ‘calling
out’ to the user when far away and creating intimacy with increas-
ing proximity.

3 HYPOTHESES

In the current study, we aim to identify the effects of incremental
adaptation of the robot’s speech intensity (loudness) based on the
addressee’s distance, as well as the effects of turning towards a
passerby and looking at him or her. Our hypothesis is that such
adaptations will be noticed by the person addressed as contingent
with their own movement and understood as an attempt to initiate
the particular interaction.

4 METHOD

Since we want to study the effects of adjusting a robot’s behavior
to a particular, unsuspecting person, our experiment was carried
out "in the wild", i.e. in a scenario where people did not know that
they were going to encounter a robot. Thus, the experiment took
place in a corridor of a large university building where participants



were students and staff from various disciplines, as well as cleaning
personnel and members of the general public.

4.1 Procedure

The robot’s behavior was implemented as shown in Figure 2. The
different robot behaviors are the following:

o the robot perceives the person approaching

the robot visibly turns to the person

while the person’s distance is more than 2m and less than

10m, the robot produces speech

— the robot chooses the length of its speech based on the
person’s distance

- in the adaptive condition, the robot adjusts its loudness
based on distance

— the robot turns to the person while approaching

e when the distance to the person is 2m or less,

— if the person is slowing down or stopping, the robot aban-
dons the current utterance at a suitable transition point
and begins a new utterance (in the adaptive condition,
uttered in soft voice)

— if the person continues to walk past the robot, the robot
abandons the current utterance and produces a new ut-
terance (in the adaptive condition, loudness adjusted to
distance)

— if the person returns, the robot begins a new utterance (in
the adaptive condition, in a soft voice).

We compare two conditions, one in which the robot adapts the
loudness of its voice incrementally to the user’s distance, and one
in which it does not. All other robot behaviors are the same across
conditions.

R perceives person (approaching) R turns (visibly) towards person
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Figure 2: Overview of the interaction

The robot was placed on one side of a corridor with much space
for people to pass if they preferred not to interact with the robot.
At the entrance to the corridor, we installed a visible sign that a
robot was in the corridor and that we were filming the interactions.

Behavior tree

Paralle!

Py 1 Py 1
Gaze fl  Speech
follower jll interaction

tracked person pose

Figure 3: Robots behavior control architecture

People could then simply choose another route if they preferred
not to interact with a robot or not to be videotaped. After having
interacted with the robot or having passed by, the participants were
stopped by a researcher and asked to fill out a short consent form
and questionnaire.

4.2 The Robot

We use the Smooth robot [16] for this study. Fig. 3 describes the ro-
bot’s behavior control architecture to exhibit the behavior described
in Fig. 2. The robot has several action nodes, such as a people de-
tector, a person tracker and a volume controller. All of these action
nodes are combined using behavior tree [8] control nodes such
as sequence (for sequential execution), or parallel (for parallel ex-
ecution) to implement the desired behavior. The people detector
uses a CNN-based pose estimator along with depth information
for estimating the pose of the detected people [15]. Once a person
is detected, the behavior tree switches to the parallel node, which
executes 5 different actions in parallel. The person tracker tracks
the identified person’s position using an extended Kalman filter.
The volume controller uses this information to change the robot’s
volume based on the person’s distance. The person follower uses
the tracked position and the PD controller to control the robot’s
turn (orientation) to follow the person, while the gaze follower uses
the tracked person’s position to follow the person using gaze. Since
changing the robot’s body orientation is slower than changing its
gaze, gaze and turn operate independently. Speech interaction is
also implemented as a separate state machine that monitors the per-
son’s distance and interrupts and plays various speech utterances.

4.3 Data Analysis

The quantitative measure used is people’s subjective evaluation of
the robot’s approaching behavior after their encounter with the
robot. Since this was an in-the-wild experiment, we could not keep
people too long to fill out questionnaires, and thus we only asked
them for their consent to use the video recordings, about their age
and gender, and furthermore three self-report questions concerning
the extent to which they thought the robot took them into account,
responded to their actions and perceived them. Finally, we gave
them some opportunity for additional comments.

As for the behavioral measures, we counted how often the ro-
bot’s approaching behavior led people to stop and comply with the
robot’s request to fill out a questionnaire. In addition, we carried



Condition takes into account | responds | perceives
non-adaptive 4.33(0.70) 3.92(1.02) | 4.04 (1.23)
adaptive 3.96 (0.79) 4.16 (0.75) | 4.042 (0.81)

Table 1: Mean (sd) evaluations of the robot’s approach behav-
ior in the two conditions

out a micro-analysis to understand how people responded to the
different robot behaviors, such as turning, gazing and speaking,
and what effect the change in loudness has on the interaction. The
micro-analysis is based on ethnomethodological conversation anal-
ysis [22, 23], which aims to uncover people’s own sense-making
mechanisms. In order to make the analysis accessible to the larger
HRI community, the presentation of the analysis was simplified.

5 RESULTS

50 people passed by the robot and stopped to fill out the ques-
tionnaire, 24 in the non-adaptive condition and 26 in the adaptive
condition. Half of the participants identify as female, the other half
as male.

A t-test shows that people judge the extent to which the robot
has taken them into account significantly higher in the adaptive
condition (t=1.74663, p= .043), whereas the differences between the
other two judgements do not reach significance.

The qualitative analysis shows that in the adaptive condition
70.6% of the people addressed by the robot stop, compared to 56.3%
in the non-adaptive condition. The example analysis in Figure 4
shows that people do notice the change in loudness and respond to
it, which indicates that they feel addressed more and more inclined
to interact with the robot. In addition to the loudness adaptation,
also the fact that the robot acknowledges that they have not stopped
by wishing them a good day functions as a strong clue that the
robot perceives them and takes them into account.

The comments the post-experimental interview/questionnaire
suggest that in the adaptive condition, people noted that the ro-
bot was adjusting to them, and they commented positively on the
robot’s gaze toward them, for instance: "Interaction was nice and
the eyes are really nice," "Big friendly eyes. Gaze and turning was
amazing,' and "The eyes are getting high warm ratings" However,
in both conditions, some find the robot also scary that it approaches
them at all:"Found it scary that the robot approached me."

6 DISCUSSION

The experiment was carried out in an in-the-wild scenario, which
means that people had not chosen to encounter a robot, that many
were in a hurry, that they were alone or in groups etc. Since people
often check with their partners whether they agree with how to
respond to a robot approaching them [11, 28], the interaction dy-
namics between people in groups has influenced the interactions
with the robot. Furthermore, at times, there was a lot of traffic
in the hallway, and people were also reluctant to stop by if they
were blocking the way for others. All these aspects of the "in-the-
wild" situation are likely to have watered down the effect of our
interventions.

Furthermore, many people who did stop to interact with the
robot were also a bit disappointed that it could not interact with

Two women walking
when the robot starts
speaking

When they pass by, the
one closer to the robot
withholds all social
signals, while the other
turns her head slightly
towards the robot.

When the robot starts
speaking in a softer
voice, they both turn
their heads and upper
body.

When the robot the
interrupts itself and
says, “oh, have a nice
day,” both turn around
abruptly and laugh.

Figure 4: Example Analysis: Two women responding to the
robot’s adjustments

them beyond the dialog initiation. Thus, their evaluation of the
degree to which the robot responded to them is not just due to
the robot’s approach behavior, but concerns its behavior after the
successful initiation of the interaction.

Given these influencing factors, the video analysis is more reveal-
ing in showing that most people respond to the robot’s adaptation
of the loudness of its speech, and that as many as 70.6% stop to
interact with it.

7 CONCLUSIONS

Our analyses have shown that even in an unconstrained "in-the-
wild" scenario, adjusting the loudness of a robot’s voice to indicate
that the robot is adjusting its speech to the particular person it is
talking to has the intended effect, such that people feel personally
addressed and more inclined to stop to interact with the robot.

For some participants, this strategy was however a bit scary —
because it was effective at addressing them personally. We can thus
conclude that while incremental loudness adaptation is effective,
the personalization achieved may not always be welcome.
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